Disciplina: ETG033 Construção de Estradas e Vias Urbanas Profa. Jisela Aparecida Santanna Greco

Terraplenagem (Notas de Aula)

1- Introdução à Terraplenagem

De forma genérica, a terraplenagem ou movimento de terras pode ser entendida como o conjunto de operações necessárias para remover a terra dos locais em que se encontra em excesso para aqueles em que há falta, tendo em vista um determinado projeto a ser implantado.

Assim, a construção de uma estrada de rodagem, de uma ferrovia ou de um aeroporto, a edificação de uma fábrica ou de uma usina hidrelétrica, ou mesmo de um conjunto residencial, exigem a execução de serviços de terraplenagem prévios, regularizando o terreno natural, em obediência ao projeto que se deseja implantar.

Pode-se afirmar, portanto, que todas as obras de Engenharia Civil de grande ou pequeno porte, exigem a realização de trabalhos prévios de movimentação de terras. Por esta razão a terraplenagem teve o enorme desenvolvimento verificado no último século.

2- Histórico

Na antiguidade, os movimentos de terra eram executados manualmente ou com o auxílio de animais que carregavam ou rebocavam instrumentos rudimentares.

Este quadro não se modificou até meados do século XIX, pois o instrumento utilizado era ainda a chamada "pá-de-cavalo", constituída de uma caçamba dotada de lâmina de corte, a qual, rebocada por tração animal, escavava e transportava o material.

Com o advento da máquina a vapor, surgiram as primeiras tentativas de utilizá-la em equipamentos de terraplenagem, a partir da segunda metade do século XIX. No final desse século já existiam escavadeiras providas de pás, montadas em vagões e usadas na construção ferroviária.

O desenvolvimento dos motores a combustão interna ocasionou a redução do tamanho físico dos equipamentos, permitindo novas aplicações.

Em 1920 é lançado o primeiro trator movido a gasolina, ao qual desde logo foi adaptada a lâmina, iniciando-se desta maneira a concepção e a fabricação dos modernos equipamentos de terraplenagem.

Nas décadas de 20 e 30, um inovador, R.G. Le Tourneau, criou o primeiro "Scraper" propelido, rebocado por trator. Em 1938 é introduzido o primeiro "Motoscraper", isto é, o "Scraper" autopropulsionado.

A partir desta data, é de todos conhecido o rápido desenvolvimento dos equipamentos de terraplenagem, apresentando máquinas cada vez mais eficientes sob o aspecto mecânico, do que resultou o aumento extraordinário de sua produtividade.

3- Terraplenagem Manual

Até o aparecimento dos equipamentos mecanizados e mesmo depois, a movimentação das terras era feita pelo homem, utilizando ferramentas tradicionais: pá e picareta para o corte, carroças ou vagonetas com tração animal para o transporte.

Como o rendimento da terraplenagem manual é pequeno, esse serviço dependia da mão-deobra abundante e barata. Mas com o desenvolvimento tecnológico e social a mão-de-obra foi se tornando cada vez mais escassa e, por conseqüência, mais cara. Para se ter uma idéia do número de operários necessários para a execução braçal do movimento de terra, estimase que para a produção de 50 m³/h de escavação, seriam necessários pelo menos 100 homens. A mesma tarefa pode ser executada por uma única escavadeira, operada apenas por um homem.

Todavia, a terraplenagem manual não significava excessiva lentidão dos trabalhos. Desde que a mão-de-obra fosse numerosa, os prazos de execução da movimentação de terras em grandes volumes eram razoáveis, se comparados com os atuais.

Temos o exemplo de ferrovias construídas nos Estados Unidos, com milhões de metros cúbicos escavados e movidos em prazos relativamente curtos, dispondo-se porém de mão-de-obra abundante e de baixo custo.

Com suficiente organização para resolver os sérios problemas de recrutamento, administração, alojamento e subsistência dos trabalhadores, a terraplenagem manual apresentava rendimento capaz de causar admiração, ainda nos dias atuais.

4- Terraplenagem Mecanizada

Os equipamentos mecanizados, surgidos em conseqüência do desenvolvimento tecnológico, apesar de apresentarem elevado custo de aquisição, tornaram competitivo o preço do movimento de terras, em razão de sua alta produtividade.

Conforme exemplificado anteriormente, percebe-se a notável economia de mão-de-obra introduzida pela mecanização, o que vinha de encontro à escassez cada vez maior do trabalhador braçal, decorrente sobretudo da industrialização.

Resumindo, pode-se entender que a mecanização surgiu em consequência de:

- a) Escassez e encarecimento da mão-de-obra, causada sobretudo pela industrialização.
- b) Elevada eficiência mecânica dos equipamentos, traduzindo-se em grande produtividade, o que significou preços mais baixos se comparados com os obtidos manualmente, especialmente em razão da redução de mão-de-obra.

Os equipamentos mecanizados (apesar do alto custo de aquisição) tornaram competitivo o preço do movimento de terras, em razão de sua alta produtividade Outro incentivo à terraplenagem mecanizada foi a escassez cada vez maior do trabalhador braçal, decorrente sobretudo da industrialização

5- Características da Terraplenagem Mecanizada

A mecanização caracteriza-se por:

- a) Requerer grandes investimentos em equipamentos de alto custo;
- b) Exigir serviços racionalmente planejados e executados, o que só pode ser conseguido através de empresas de alto padrão de eficiência;
- c) Reduzir substancialmente a mão-de-obra empregada, mas por outro lado provocar a especialização profissional e, consequentemente, melhor remuneração;
- d) Permitir a movimentação de grandes volumes de terras em prazos curtos, graças à eficiência de operação e, sobretudo, pela grande velocidade no transporte, o que leva a preços unitários extremamente baixos, apesar do custo elevado dos equipamentos. Para se ter uma idéia da influência do aumento da produtividade no custo da terraplenagem, apesar da elevação substancial ocorrida no valor de aquisição dos equipamentos, praticamente não houve acréscimo nos preços de movimento de terra, nos Estados Unidos, no período de 1930 a 1960.

6- Operações Básicas de Terraplenagem. Ciclo de Operação.

Examinando-se a execução de quaisquer serviços de terraplenagem, podem-se distinguir quatro operações básicas que ocorrem em seqüência, ou, às vezes, com simultaneidade.

- a)Escavação;
- b)Carga do material escavado;
- c)Transporte;
- d) Descarga e espalhamento.

Essas operações básicas podem ser executadas pela mesma máquina ou por equipamentos diversos. Exemplificando, um trator de esteira provido de lâmina, executa sozinho todas as operações acima indicadas, sendo que as três primeiras com simultaneidade.

7-Estudo dos Materiais de Superfície

7.1 - Conceitos:

A superficie terrestre é constituída de vários elementos. Mas, de uma maneira geral, para fins de terraplenagem, é constituída por: ROCHAS e SOLOS.

- a) Rochas materiais constituintes essenciais da crosta terrestre provenientes da solidificação do magma ou de lavas vulcânicas ou da consolidação de depósitos sedimentares, tendo ou não sofrido transformações metamórficas. Esses materiais apresentam elevada resistência, somente modificável por contatos com o ar ou a água em casos muito especiais;
- **b) Solos** materiais constituintes especiais da crosta terrestre provenientes da decomposição *in situ* das rochas pelos diversos agentes geológicos, ou pela sedimentação não consolidada dos grãos elementares constituintes das rochas, com adição eventual de partículas fibrosas de material carbonoso e matéria orgânica coloidal.

7.2-Terminologia Segundo as Dimensões

7.2.1 - Rochas

- a) Bloco de Rocha pedaço isolado de rocha com diâmetro médio superior a 1 m;
- b) Matação pedaço de rocha com diâmetro médio superior a 25 cm e inferior a 1m;
- c) Pedra pedaço de rocha com diâmetro médio compreendido entre 7,6 cm e 25 cm.
- **OBS.:** Rocha Alterada é a que apresenta, pelo exame macroscópico ou microscópico, indícios de alteração de um ou vários de seus elementos mineralógicos constituintes, tendo geralmente diminuídas as características originais de resistência.
- 7.2.2 Solos são os materiais da crosta terrestre constituídos por partículas de diâmetros inferiores a 76 mm
- **a) Pedregulho** solos cujas propriedades dominantes estão relacionadas aos grãos minerais de diâmetros superiores a 2,00 mm e inferiores a 76 mm;
- **b) Areia** solos cujas propriedades dominantes estão relacionadas aos grãos minerais de diâmetro máximo superior a 0,075 mm e inferior a 2,00 mm;
- c) Silte solo que apresenta apenas a coesão para formar, quando seco, torrões facilmente desagregáveis pela pressão dos dedos; suas propriedades dominantes estão relacionadas aos grãos de diâmetros máximos superiores a 0,005 mm e inferiores a 0,075 mm;
- d) Argila solo que apresenta características marcantes de plasticidade; quando suficientemente úmido molda-se facilmente em diferentes formas; quando seco apresenta coesão bastante para constituir torrões dificilmente desagradáveis por pressão dos dedos;

suas propriedades dominantes são ditadas pelos grãos de diâmetros máximos inferiores a 0,005 mm;

- e) Solos Misturados Os solos em que não se verifique nitidamente a predominância de propriedades anteriormente referidas serão designados pelo nome do tipo de solo cujas propriedades forem mais acentuadas, seguido de adjetivos correspondentes aos que o completam. Por exemplo: argila arenosa, argila silto-arenosa, solo silto-argiloso, solo micáceo com areia fina;
- **f) Solos com Matéria Orgânica -** caso um dos tipos acima apresente teor apreciável de matéria orgânica será anotada sua presença. Exemplo: argila arenosa com matéria orgânica;
- **g) Turfas** solos com grandes porcentagens de partículas fibrosas de material carbonoso ao lado de matéria orgânica do estado coloidal;
- h) Alteração de Rocha é o solo proveniente da desagregação das rochas in situ pelos diversos agentes geológicos. Será descrito pela respectiva textura, plasticidade e consistência ou compacidade, sendo indicados ainda o grau de alteração e, se possível, a rocha de origem;
- i) Solos Superficiais a zona abaixo da superficie do terreno natural, igualmente constituída de mistura de areias, argilas e matéria orgânica exposta à ação dos fatores climáticos e de agentes de origem vegetal e animal será designada simplesmente como solo superficial.

7.3 - Desmonte

Sob o ponto de vista da terraplenagem, os fatores que influenciam no desmonte são:

a)Rochas

• Grau de Compacidade (Estado de alteração, provocado por diversos agentes naturais, reduzindo as suas características originais de resistência mecânica).

b)Solos

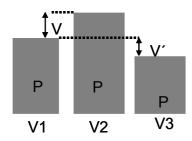
- •Teor de umidade
- Tamanho e forma das partículas
- Vazios

7.4 - Classificação

Após a mecanização, a classificação passou a se basear no equipamento capaz de realizar economicamente o desmonte.

1ª Categoria - os solos que podem ser escavados com auxílio de equipamentos comuns: trator de lâmina, "motoscraper", pás-carregadeiras.

2ª Categoria - são os materiais removidos com os equipamentos já citados, mas que pela sua maior consistência exigem um desmonte prévio feito com escarificador ou emprego descontínuo de explosivos de baixa potência.


OBS.: Atualmente o material de 2^a categoria está sendo subdividido:

- a) 2^a Categoria com material pré-escarificável
- b) 2ª Categoria com o emprego descontínuo de explosivos e pré-escarificação
- **3ª** Categoria materiais de elevada resistência mecânica que só podem ser tratados com o emprego exclusivo de explosivos de alta potência.

7.5 - Comportamento do Solo

As propriedades físicas do material que devem ser consideradas são:

- Peso
- Empolamento
- Redução

- a) Peso: Depende de seu peso específico: $\gamma = \frac{P}{V}$
- b) **Empolamento**: Pode ser definido como o aumento de volume sofrido por um material ao ser removido de seu estado natural. É expresso como sendo a percentagem do aumento de volume em relação ao volume original. (Aumento do índice de vazios).

Pela definição, temos:

$$E(\%) = \frac{V}{V1} \times 100$$

b.1) Fator de Conversão: Pode ser definido como a relação entre o peso específico no estado solto e o peso específico no estado natural ou corte.
 Fator de Conversão =

Peso Específico no Estado Solto

Peso Específico no Corte

b.2) Relação entre Empolamento e Fator de Conversão:

- Empolamento, por definição:
$$E(\%) = \frac{V}{V1} \times 100$$

$$Fc_{E} = \frac{\gamma 2}{\gamma 1}$$

Relação entre E e F_{CE}

$$E(\%) = \frac{V}{V1} \times 100 = \frac{V2 - V1}{V1} \times 100 = (\frac{V2}{V1} - 1) \times 100$$

$$Fc_E = \frac{P/V2}{P/V1} = \frac{V1}{V2}$$

$$V1 = Fc_E \times V2$$

$$\frac{1}{FcE} = \frac{V_2}{V_1}$$

$$E(\%) = \left(\frac{1}{FcE} - 1\right) \times 100$$

$$\mathbf{Fc_E} = \frac{100}{100 + E}$$

c) **Redução**: É a redução de volume sofrida por um material por efeito de compactação de rolos, vibradores, etc., compactando o material em grau maior do que ele é encontrado em seu estado natural. Essa redução depende, naturalmente, do grau de compactação exigido e do material.

Por Definição:

$$R(\%) = \frac{V'}{V1} \times 100$$

$$R(\%) = \left(\frac{V1 - V3}{V1}\right)100 = \left(1 - \frac{V3}{V1}\right) \times 100$$

$$Fc_{R} = \frac{\gamma 3}{\gamma 1} = \frac{P/V3}{P/V1}$$

$$Fc_R = \frac{V1}{V3}$$

$$R(\%) = (1 - \frac{1}{F_{cR}}) \times 100$$

$$\mathbf{Fc_R} = \frac{100}{100 - R}$$

A Tabela 7.1 apresenta uma lista parcial do peso específico aproximado (Kgf/m³), porcentagem de empolamento e fator de conversão dos tipos mais comuns de materiais.

Tabela 7.1 - Peso específico aparente para diversos materiais

Peso* dos materiais			solto (Kgf/m³)	no corte (kgf/m³)
Basalto			1960	2970
Bauxita			1420	1900
Salitre			1250	2260
Carnotite, minério de u	ırânio		1630	2200
Cinzas			560	860
Argila	leito natural		1660	2020
·g	seca		1480	1840
	úmida		1660	2080
Argila e cascalho	secos		1420	1660
<u> </u>	úmidos		1540	1840
Carvão,	antracito	natural	1190	1600
		lavado	1100	
	cinza de carvão	betuminoso	530-650	590-890
	betuminoso:	natural	950	1280
Rocha decomposta	,			
	75% rocha	25% terra	1960	2790
	50% rocha	50% terra	1720	2280
	25% rocha	75% terra	1570	1960
Terra	seca,	compactada	1510	1900
	úmida	escavada	1600	2020
	marga	00001000	1250	1540
Granito	fragmentado		1660	2730
Cascalho	bruto		1930	2170
	seco		1510	1690
	seco,	de 6-50 mm (1/4"-2")	1690	1900
	úmido	de 6-50 mm (1/4"-2")	2020	2260
Gesso	fragmentado	4000011111 (1112)	1810	3170
	triturado		1600	2790
Hematita,	minério de ferro		1810-2450	2130-2900
Calcário	fragmentado		1540	2610
	triturado		1540	
Magnetita,	minério de ferro		2790	3260
Pirita	minério de ferro		2580	3030
Areia	seca, solta		1420	1600
7 11 010	úmida		1690	1900
	molhada		1840	2080
Areia e argila	soltas		1600	2020
7 troid o drynd	compactadas		2400	2020
Argila e cascalho	secos		1720	1930
7 tigila e oaooaino	úmidos		2020	2230
Arenito	umado		1510	2520
Xisto			1250	1660
Escória	fragmentada		1750	2940
Neve	seca		130	2070
11010	úmida		520	
Pedra	britada		1600	2670
Taconita	viilaud		1630-1900	2360-2700
	orgânica		950	1370
Terra	orgânica		900	1370

^{*} Varia conforme o teor de umidade, tamanho das partículas, grau de compactação, etc. Testes devem ser feitos para determinar as características exatas do material.

8- Providências Preliminares para Serviços de Terraplenagem

8.1.-Providências ao Iniciar uma Obra de Terraplenagem

- **8.1.1** Aluguel ou compra de equipamento mecânico;
- **8.1.2** Transporte de equipamento para o local de serviço;
- **8.1.3** Determinação dos caminhos de serviço;
- **8.1.4** Terraplenagem e drenagem da área destinada ao acampamento;
- 8.1.5 Obtenção de luz e água;
- **8.1.6** Recrutamento do pessoal técnico, administrativo e operário; sempre que possível, utilizar mão de obra da cidade mais próxima da obra.

8.2- Canteiro de Obra

- **8.2.1** Instalação provisória de uma obra fixa
- **8.2.2** Deve estar situado:
 - 1) próximo a cidade
 - 2) próximo a estradas existentes
 - 3) próximo a fontes de água e de energia elétrica
 - 4) próximo ao local da obra
 - 5) fora do local que possa ser atingido pela obra.

8.3- Almoxarifado

- **8.3.1** Destinado ao armazenamento de peças de reposição
 - Sua dimensão é função do número de máquinas
 - 2 barrações
 - a) peças uso freqüente
 - b) peças pesadas

8.3.2 - Pessoal Especializado e de Confiança

8.4- Escritório

- Deve ter
- a) contabilidade
- b) seção técnica
- c) arquivo
- d) sala de fiscalização
- e) sala de Eng. produção, etc.

8.5- Outras Construções

- cantina, guaritas, oficinas
- salas de lazer, etc.

9- Máquinas e Equipamentos

9.1- Classificação Geral

a)Máquinas Motrizes - São aquelas que produzem a energia para a execução do trabalho. Ex.: tratores de rodas ou de esteira, compressores, etc., quando convenientemente equipados podem realizar os serviços

b) Máquinas Operatrizes - São aquelas que acionadas pelas máquinas motrizes realizam diretamente o trabalho. Ex.: scraper, escarificadores, compactadores.

10 - Potência

- **10.1 Necessária** É aquela que vamos necessitar para executar um trabalho, seja puxando ou empurrando uma carga.
- 10.2 Disponível É aquela que a máquina pode fornecer para executar um trabalho.
- 10.3 Usável É a potência que podemos utilizar, limitada pelas condições locais.

11 - Classificação dos Equipamentos: Unidades de Tração (Tratores); Unidades Escavo-Empurradoras; Unidades Escavo-Transportadoras; Unidades Escavo-Carregadoras; Unidades Aplanadoras; Unidades de Transportes; Unidades Compactadoras

11.1- Unidades de Tração (Tratores)

A Unidade de Tração (Trator) é a **máquina básica de terraplenagem**, pois todos os equipamentos à disposição para executá-la são tratores devidamente modificados ou adaptados para realizar as operações básicas de terraplenagem.

Chama-se **trator** a unidade autônoma que executa a tração ou empurra outras máquinas e pode receber diversos implementos destinados a diferentes tarefas.

Essa unidade básica pode ser montada sobre:

- a) Esteiras: De modo geral, as esteiras exercem pressões sobre o terreno portante da ordem de 0,5 a 0,8 kgf/cm² aproximadamente, igual à pressão exercida por um homem em pé, sobre o chão.
- **b) Pneumáticos:** Os equipamentos de rodas, ao contrário, transmitem ao terreno pressões de contato da ordem de **3 a 6 kgf/cm**².

11.1.1- Características

- a) Esforço Trator: É a força que o trator possui na barra de tração (no caso de esteiras) ou nas rodas motrizes (no caso de tratores de rodas) para executar as funções de rebocar ou de empurrar outros equipamentos ou implementos;
- **b)** Velocidade: É a velocidade de deslocamento da máquina, que depende, sobretudo, do dispositivo de montagem, sobre esteiras ou sobre rodas;
- c) Aderência: É a maior ou menor capacidade do trator de deslocar-se sobre os diversos terrenos ou superfícies revestidas, sem haver a patinagem da esteira (ou dos pneus) sobre o

solo (ou revestimento) que o suporta;

- **d)** Flutuação: É a característica que permite ao trator deslocar-se sobre terrenos de baixa capacidade de suporte, sem haver o afundamento excessivo da esteira, ou dos pneus, na superfície que o sustém;
- e) Balanceamento: É a qualidade que deve possuir o trator, proveniente de uma boa distribuição de massas e de um centro de gravidade a pequena altura do chão, dando-lhe boas condições de equilíbrio, sob as mais variadas condições de trabalho.

11.1.2- Quadro Comparativo

	Trator de Esteira	Trator de Rodas
Esforço Trator	Elevado	Elevado, Limitado pela aderência
Aderência	Воа	Ruim
Flutuação	Воа	Regular a ruim
Balanceamento	Bom	Bom
Velocidade	Baixa *	Alta **

Obs.: * menor que 10 km/h ** entre 10 a 70 km/h

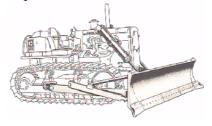
11.1.3 - Campos de Aplicação

a) Trator de Esteira

- Esforços tratores **elevados**
- Rampas de grande declividade
- Terrenos de baixa capacidade de suporte

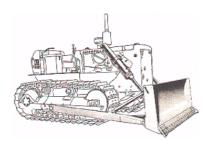
OBS.: Não teremos velocidade de operação, o que resulta em baixa produtividade

b) Trator de Rodas

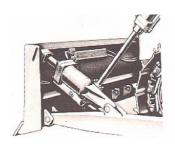

- **Topografia** favorável
- Condições de bom **suporte**
- Boas condições de aderência

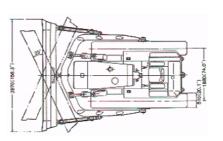
OBS.: As máquinas de pneu são insuperáveis em relação a velocidade, significando maior produção.

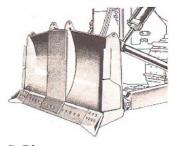
11.2-Unidades Escavo-Empurradoras


O trator de esteira ou de pneus, que é a **máquina básica da terraplenagem**, pode receber a adaptação de um implemento que o transforma numa unidade capaz de escavar e empurrar a terra, chamando-se por isso, unidade escavo-empuradora.

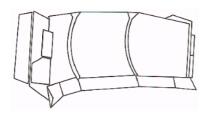
Esse implemento é denominado lâmina e o equipamento passa a denominar-se trator de **lâmina ou buldôzer.**




11.2.1 - Lâminas


a) Lâmina fixa ou Reta

c) Tiltdôzer/ Tip-dozer (lâminas anguláveis e inclináveis) – buldôzer ou lâmina que pode ser girada em torno do eixo longitudinal do trator ao qual é aplicada


b) Angledôzer (lâmina angulável)

d) Placas para empurrar

11.2.2 - Lâminas Especiais

a) Universal - "U"

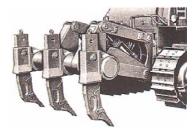
- Para grandes cargas
- Para grandes distâncias
- relação kW/metro da borda cortante (largura) baixa (essa relação é uma indicação da capacidade da lâmina para penetrar e pegar uma carga. Quanto maior a relação kW/m, mais agressiva é a lâmina)
- Utilizada para solos de baixa resistência ao corte
- Evita perdas laterais
- relação kW/m³ solto baixa → materiais leves
 a relação kW/m³ solto indica a capacidade da lâmina para carregar material

b) Reta - "S"

- Para materiais resistentes
- relação kW/m elevada (lâmina mais agressiva)
- relação kW/m³ elevada materiais pesados
- Com placa para "pusher" → motoscrapers

c) Angulável - "A"

- pode ser posicionada em linha reta ou a um ângulo de 25º para ambos os lados
- Escavação de meia encosta
- Valetas
- Reaterro


d) Amortecedora - "C"

- Tratores de grande porte
- Apoio aos motoscrapers
- Largura reduzida aumenta sua capacidade de manobra

11.2.3 - Outros Implementos

Escarificador ou "Ripper"

- Utilizado em material de 2a categoria
- Munidos de pistões hidráulicos, de duplo sentido com bomba de alta pressão.

11.3 - Unidades Escavo-Transportadoras

As unidades Escavo-Transportadoras são as que escavam, carregam e transportam materiais de consistências média a distâncias médias.

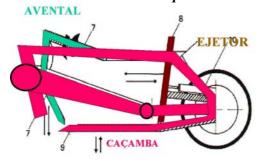
São representadas por dois tipos básicos:

- a) Scraper Rebocado;
- b) Scraper automotriz ou motoscraper.

11.3.1 - Scraper Rebocado

O scraper rebocado consiste numa caçamba montada sobre um eixo com dois pneumáticos, rebocada por um trator.

11.3.2-Scraper Automotriz / Moto-scraper


O scraper automotriz ou moto-scraper consiste em um scraper de único eixo que se apoia sobre um rebocador de um ou dois eixos, através do pescoço.

A razão dessa montagem reside no ganho de **aderência** que as rodas motrizes do trator passam a ter, em consequência do aumento do peso que incide sobre elas (Peso Aderente).

O moto-scraper é um dos equipamentos responsáveis pela viabilização da utilização maciça da terraplenagem mecanizada. O que possibilitou a diminuição do preço do m³ transportado foi o invento do **pescoço**, que, quando o moto-scraper está em movimento, transmite aproximadamente 60% do peso da carga para a roda motriz, conseqüentemente aumentando a aderência, possibilitando a utilização de grande potência usável.

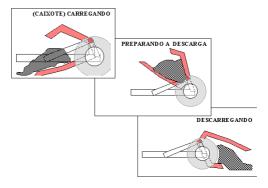
11.3.3 - Elementos Principais

- 7 Avental
- 8 Ejetor
- 9 Lâmina de Corte
- 10 Pistão Hidráulico

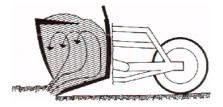
Os comandos de acionamento são executados por pistões hidráulicos de duplo sentido e acionados por bomba hidráulica de alta pressão.

A escavação é feita pelo movimento sincronizado da **Lâmina de Corte** que entra em contato com o terreno pelo abaixamento da caçamba, ao mesmo tempo que o **Avental** é elevado com a movimentação gradual do **Ejetor**.

A carga se faz pelo **arrastamento** do scraper, com o qual a lâmina penetra no solo, empurrando-o para o interior da caçamba.


(ejetor recuado, avental elevado, caçamba abaixada)

Descarga:


(ejetor em movimento para a frente, caçamba elevada, avental elevado)

Existem também equipamentos de pequeno porte, apelidados "caixotes", com os mesmos princípios de trabalho, cuja descarga é executada por um grande giro da caçamba, não existindo o ejetor. Um exemplo são scrapers com capacidade da caçamba da ordem de 3 a 4 m³. Em geral são agrupados (dois) e rebocados por um trator agrícola, onde ficam os controles.

OBSERVAÇÕES:

- 1) A arrumação do solo depende da **experiência do operador** para executar o **movimento sincronizado** da lâmina, avental e ejetor.
- 2) O Esforço de Tração é consumido:
- a) Resistência oposta ao movimento
 - cortar o solo
 - empurrá-lo para dentro da caçamba
 - arrumar o solo dentro da caçamba
- b) Atritos gerados pelo solo em contatos laterais, de fundo e interno com a caçamba.
 - Esses esforços são de 10 a 20 vezes maiores que a resistência ao rolamento.
- 3) Aumento de **densidade de 15% a 25%** em relação ao carregamento com uma carregadeira.
- 4) Melhora da aderência (pescoço): menor balanceamento e menor flutuação

11.3.4 - Pusher e Pusher-Pull

Quando a **aderência** estiver baixa (patinagem das rodas) ou a **potência disponível** for insuficiente, usa-se **trator de esteira** ou de **rodas** para auxiliar no carregamento, denominando-se esta operação de **Pusher**.

Na operação **Pusher-Pull** são utilizados motoscrapers com dois motores e tração nas quatro rodas. Como a força de tração nas quatro rodas ainda não é suficiente, criou-se um dispositivo em forma de gancho que acopla um motoscraper ao outro. Dessa forma o esforço das 8 rodas dos dois motoscrapers acoplados é utilizado para carregar um dos scrapers e em seguida o outro. Os motoscrapers se acoplam e se ajudam mutuamente na operação de carregamento.

Enquanto a máquina da frente carrega, é auxiliada pela outra que fornece o **esforço trator** adicional necessário. Posteriormente a máquina da frente traciona o outro motoscraper, para o seu carregamento.

11.3.5 - Máquinas Especiais

a) Motoscrapers com 2 (dois) motores - É o que possui o eixo traseiro também provido de força motriz - "Twin" ou seja motores geminados que funcionam em conjunto.

Vantagens:

- maior potência
- maior ADERÊNCIA
- trabalho em rampas mais acentuadas
- maior volume transportado

11.3.6- Equipamentos

11.4-Unidades Escavo-Carregadeiras

São as unidades que "escavam" e carregam o material sobre um outro equipamento, que o transporta até o local da **descarga**, de modo que o ciclo completo da terraplenagem, compreendendo as quatro operações básicas, é executado **por duas** máquinas distintas (as escavo-carregadeiras e as unidades de transporte).

As unidades escavo-carregadeiras são representadas pelas:

- a) Carregadeiras
- b) Escavadeiras

Embora bastante diferentes, ambas executam as mesmas operações de escavação e carga.

11.4.1 – Carregadeiras

São chamadas de **pás-carregadeiras** e podem ser montadas sobre esteiras ou rodas com pneumáticos.

Normalmente a caçamba é instalada na parte dianteira.

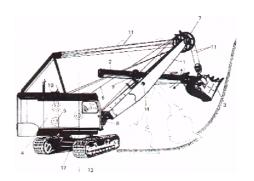
No carregamento, as carregadeiras é que se deslocam, movimentando-se entre o talude e o veículo de transporte.

Características da carregadeira de pneus

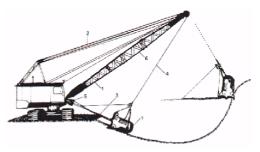
- Alta velocidade de deslocamento
- Grande mobilidade
- Deslocamento a grande distância (elimina transporte em carreta)
- Menor tração principalmente na escavação, risco de patinagem
- Baixa flutuação
- Tração nas quatro rodas
- Peso próprio elevado peso aderente sobre a roda motriz
- Motor sobre o eixo traseiro

Equipamentos

11.4.2 - Escavadeiras

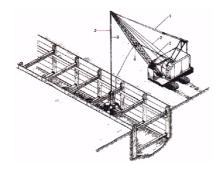

São chamadas de **pás mecânicas**. Consistem em um equipamento que trabalha parado. Pode ser montado sobre esteiras, pneumáticos ou trilhos.

- Características das Escavadeiras
 - Normalmente sobre esteiras
 - Giro de 360°
 - Esteiras Lisas, sem garras e de maior largura
 - Boa flutuação
 - Baixo Balanceamento
 - Deslocamento 1,5 km/h (pequenas distâncias)
 - Deslocamento em distância carretas especiais
- Dependendo do tipo de trabalho, monta-se no trator, o tipo de lança necessário.



Principais tipos de lanças:

a) Pá Frontal ou "SHOVEL": Ângulo de inclinação da lança de 35° a 65°. A caçamba é provida de dentes, para facilitar o corte.



b) Caçamba de arrasto ou "DRAG-LINE" A lança "Drag-Line" ou draga de arrasto permite variação do ângulo entre 25° e 40°. Destina-se a escavar abaixo do terreno em que a máquina se apóia. É utilizada para escavar materiais pouco compactados ou moles, mesmo que possuam altos teores de umidade. É o equipamento convencional que possui o maior raio de alcance.

c) Caçamba de mandíbulas ou "CLAM-SHELL"

A lança é constituída de duas partes móveis, comandadas por cabos que podem abrir ou fechar a caçamba com mandíbulas, possuindo superfícies de corte ou dentes. É apropriado para a abertura de valas de pequenas dimensões, sobretudo quando há obstáculos como escoramentos, tubulações subterrâneas, etc.

d) Retroescavadeira

Semelhante à escavadeira de pá frontal, diferindo apenas em relação à caçamba. A escavação se faz no sentido de cima para baixo. O movimento da máquina é em marcha a ré. Escava solos mais compactados.

11.5 - Unidades Aplanadoras

As unidade **aplanadoras** destinam-se especialmente ao acabamento final da terraplenagem, isto é, executam as operações para conformar o terreno aos greides finais do projeto.

As principais características destes equipamentos são a grande mobilidade da lâmina de corte e a sua precisão de movimentos, permitindo o seu posicionamento nas situações mais diversas.

A lâmina pode ser angulada em relação a um eixo vertical e também inclinada lateralmente, buscando alcançar a posição vertical.

Para compensar as forças excêntricas surgidas por estes movimentos, as rodas dianteiras podem ser inclinadas, de maneira a contrabalançar aqueles esforços.

Entre a lâmina e o eixo dianteiro, pode ser encontrado um escarificador, usado para romper um solo compacto.

11.6 - Unidades de Transporte

As unidades transportadoras são utilizadas na terraplenagem quando as distâncias de transporte são de tal grandeza que o emprego de "Motoscrapers" ou "Scrapers" rebocados se torna antieconômico.

Assim, para as grandes distâncias deve-se optar pelo uso de equipamentos mais rápidos, de baixo custo, que tenham maior produção, ainda que com o emprego de um número elevado de unidades.

São unidades de transportes: Caminhões Basculantes Comuns; Vagões; Caminhões Fora de Estrada.

Vagões

São unidade de porte, com grande capacidade, geralmente rebocados por tratores de pneus semelhantes aos utilizados nos "motoscrapers". Executam apenas as operações de transporte e descarga, sendo carregados por unidades escavo-carregadoras.

Os vagões diferenciam-se entre si, já que podem fazer a descarga por:

- •Fundo móvel ("Bottom-dump");
- •Traseira, por basculagem da caçamba ("rear-dump");
- •Lateral ("side-dump").

O volume da caçamba chega a 102 m³ e atinge a velocidade de 60 km/h.

-Fora de Estrada

Utilizado para serviços pesados. Necessita estrada especial, tem baixa flutuação. Caçambas acima de 10 m³, chegando a 100 ton., com motores até 1000 HP.

11.7 - Unidades Compactadoras

As unidades compactadoras destinam-se a efetuar a operação denominada compactação, isto é, o processo mecânico de **compressão dos solos**, resultando em um **índice de vazios menor**.

A compactação é o processo pelo qual se obtém mecanicamente o aumento de resistência do solo.

Os solos, para que possam ser utilizados nos aterros das obras de terraplenagem, devem preencher certos requisitos, ou seja, devem ter seu comportamento técnico melhorado, para que se transformem em **verdadeiro material de construção**. Esse objetivo é atingido de maneira **rápida e econômica** através das operações de compactação.

12 -Dimensionamento

12.1- Resistência ao Rolamento (Rro)

É a força de resistência exercida pelo solo / pavimento contra as rodas da máquina. É a medida da força que é preciso superar a fim de rolar ou puxar uma roda sobre o solo.

Essa força é afetada por condições do solo e pela carga – quanto mais uma roda afunda no solo, maior a resistência ao rolamento.

Para veículos sobre pneus, a experiência mostrou que a resistência mínima (devido ao atrito interno e à flexão dos pneus) é aproximadamente igual a 2% do peso bruto do veículo (PBV). A resistência decorrente da penetração dos pneus é aproximadamente igual a 0,6% do PBV para cada cm de penetração do pneu.

Rro = 2% PBV + 0,6% do PBV por cm de penetração do pneu

Obs: a expressão acima é válida para veículos de obra, que se deslocam com velocidades relativamente baixas.

EXEMPLO

Resistência ao rolamento para um veículo que se desloca em superfície DURA E LISA:

Rro = 2% PBV

para 1 tf, a resistência ao rolamento é de 20 Kgf

fator de resistência ao rolamento (Fro) = 20 Kgf/tf

(para se determinar a resistência ao rolamento, multiplicar esse fator pelo PBV)

12.2- Fatores que Influenciam a Resistência ao Rolamento

- Condições do Solo
- Fricção Interna
- Flexibilidade dos Pneus
- Penetração na Superfície do Solo
- Peso nas Rodas
- Pressão dos Pneus
- Desenho na Banda de Rodagem

12.3 - Padrões de Fatores de Resistência ao Rolamento (10 Kgf/tf = 1%)

Como as condições do solo variam consideravelmente, o número possível de fatores de resistência ao rolamento é quase ilimitado. Todavia, para finalidades práticas, foram estabelecidos padrões gerais:

Condições de superfície	Fatores de resistência ao rolamento (Kgf/tf)
Estrada dura, suave, estabilizada e pavimentada, que não cede sob peso, e com boa manutenção	20
Estrada firme e suave, de terra ou macadame, cedendo sob peso ou apresentando ondulação e com manutenção razoável	35
Estrada de terra, sulcada, cedendo sob peso, com pouca ou nenhuma manutenção e 25 a 50 mm de penetração dos pneus	50
Estrada de terra, sulcada, cedendo sob peso, sem manutenção, nem estabilização, com 100 a 150 mm de penetração dos pneus	75
Areia solta ou cascalho	100
Estrada macia, lamacenta, sulcada, sem manutenção	100 a 200

12.4- Resistência de Rampa (Rra)

É a força que se opõe ao movimento nas rampas. Ela age contra o peso total de qualquer veículo, de esteiras ou de rodas.

- ASCENDENTE resistência
- DESCENDENTE ajuda, assistência de rampa.

A resistência de rampa é comumente expressa como porcentagem positiva (+) e a assistência de rampa, como porcentagem negativa (-).

Foi constatado que, para cada 1% de incremento na rampa adversa, é preciso superar mais 10 kgf de resistência para cada tonelada de peso do veículo.

Fator de resistência de rampa (Fra) = (10 Kgf/tf) x % de rampa

Resistência de rampa (Rra) = Fra x peso da máquina em tf

$$Rra = Fra \times PBV (tf)$$

A resistência de rampa também pode ser calculada como uma porcentagem do peso bruto do veículo. Como a resistência de rampa é aproximadamente igual a 1% do PBV para cada 1% de incremento na rampa:

$$Rra = 1\%$$
 do PBV x % da rampa

12.5- Resistência Total

É o efeito combinado da resistência ao rolamento (nos veículos de rodas) e da resistência de rampa.

Resistência Total = Resistência ao Rolamento + Resistência de Rampa

12.6- Rampa Efetiva (%)

A resistência total também pode ser representada simplesmente como resistência de rampa expressa em porcentagem de rampa. Nesse caso, a resistência ao rolamento é vista como uma quantidade adicional correspondente de resistência de rampa adversa.

Isso pode ser feito convertendo-se a contribuição da resistência ao rolamento em uma percentagem correspondente de resistência de rampa: já que 1% de rampa adversa oferece uma resistência de 10 Kgf para cada tf de peso do veículo, cada 10 Kgf de resistência por tf de peso do veículo pode ser representada como 1% adicional de rampa adversa.

Resistência total percentual = Rampa efetiva

Rampa efetiva = Fro em termos de rampa percentual + rampa (%)

R efetiva = Fro (%) + rampa (%)

12.7- Observações

12.7.1- Potência Necessária:

É a potência necessária para impulsionar uma máquina através de uma superfície, de um corte, ou ao longo de uma estrada. Os fatores que determinam a potência necessária são a resistência ao rolamento e a resistência de rampa.

12.7.2- Potência Disponível:

Objetivo: determinação da força de tração disponível em uma máquina para a execução de um trabalho.

Fatores que a determinam:

Potência - relaciona o trabalho realizado por uma força com o tempo gasto para a realização desse trabalho; é um valor constante, para um dado veículo

Velocidade – variável

A relação entre velocidade, potência e tração pode ser expressa por:

Potência = tração × velocidade

Uma vez que a potência será constante, a força de tração disponível mudará à medida que a velocidade sofrer alteração.

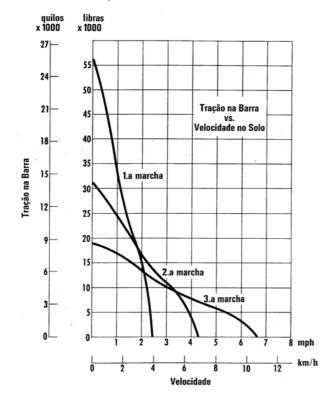


Figura 12.1 - Velocidade versus tração na barra para um trator de esteiras

No caso de um veículo de rodas, a tração é medida em tração do aro das rodas, que é a força disponível entre o pneu e o solo para impulsionar o veículo para frente. Máquinas equipadas com conversor de torque têm um grande número de combinações de tração em Kgf (ou tração no aro das rodas) versus velocidade. Curvas de tração do aro das rodas versus velocidade para máquinas com conversor de torque estão incluídas em manuais de produção de fabricantes.

A Figura 12.2 apresenta curvas típicas de tração no aro das rodas versus velocidade para um trator-scraper de rodas com 16,8 m³ de capacidade. Estas curvas fornecem a

velocidade estimada em que a máquina pode deslocar-se e a tração que ela é capaz de exercer sob uma determinada série de condições.

Figura 12.2 - Curvas típicas de tração no aro das rodas versus velocidade

12.7.3- Potência utilizável (Usável)

É a máxima potência que se pode usar. Depende dos limites impostos pelas condições reais de trabalho.

- Fatores que a determinam
$$\begin{cases} Aderência \\ Altitude \end{cases}$$

a) Aderência

É a capacidade que têm as esteiras ou rodas de aderirem ao solo. Influi diretamente na força tratora; quanto menor a aderência, menor a força tratora.

NOTA -A aderência é função do peso sobre as rodas ou esteiras e das condições do solo

A aderência é representada por um coeficiente variável com as condições do terreno. Este coeficiente corresponde a uma percentagem do peso existente sobre as rodas motrizes. Se afirmarmos que o coeficiente é de 0,35 para os pneus em uma estrada revestida com cascalho, isto significa que o esforço máximo de tração para este terreno corresponde a 35% do peso suportado pelas rodas motrizes.

$$Fa = \mu a \times P$$

Força tratora usável = coeficiente de aderência × peso sobre o conjunto propulsor

Para se determinar o peso sobre o conjunto propulsor:

- -Para tratores de esteira Usar o peso total do trator
- -Para tratores de 4 rodas Usar a % de peso suportada pelas rodas motrizes (folha de especificação) ou 40 % do peso total do conjunto trator-scraper
- -Para tratores de 2 rodas Usar a % de peso nas rodas motrizes (folha de especificação) ou 60% do peso do conjunto trator-scraper.

COEFICIENTES DE ADERÊNCIA (OU TRAÇÃO) PARA TRATORES			
MATERIAIS	PNEUS	<i>ESTEIRA</i>	
Concreto	0,90	0,45	
Argila seca	0,55	0,90	
Argila úmida	0,45	0,70	
Estrada comum (mal conservada)	0,40	0,70	
Areia solta seca	0,20	0,30	
Areia solta úmida	0,40	0,50	
Material de pedreira	0,65	0,55	
Estrada de cascalho (não compactada)	0,35	0,50	
Terra firme	0,55	0,90	
Terra solta	0,45	0,60	

Uma máquina não pode exercer uma tração superior ao peso que ela tem sobre suas rodas acionadoras ou esteira.

b) Altitude

A cada 100m, acima de 1000m, perde-se 1% de potência. Isso porque, à medida que a altitude aumenta, o ar torna-se menos denso. Motores de aspiração natural, sem turbocompressores ou ventoinhas para acumular ar dentro dos cilindros, são afetados mais seriamente. Motores com turbocompressor podem manter sua capacidade nominal até altitudes muito mais elevadas que motores de aspiração natural. Geralmente, para motores com turbocompressor, não há perda de potência em altitudes abaixo de 2250 metros.

13- Produção de Obra

Há muitos fatores influenciando cada obra. Um empreiteiro precisa saber o máximo possível sobre a obra, antes de poder enfrentá-la com sucesso. Embora não existam duas obras exatamente iguais, há várias semelhanças e sabendo como controlá-las, um empreiteiro conseguirá um bom ponto de partida para começar a resolver seu problema.

A produção sofre a influência de três fatores básicos:

- 1-Tempo
- 2-Material
- 3-Eficiência

Objetivo – escavação ou corte, carregamento, transporte (incluindo retorno), descarga e espalhamento.

O empreiteiro tem certa quantidade de m³ de terra para ser removida, em determinado prazo

IJ

A partir daí pode determinar quantos m³ devem ser removidos por hora de trabalho

 \Box

Para saber se tem condições de realizar o trabalho

 Ω

Deve saber quantos m³/h pode remover com seu equipamento

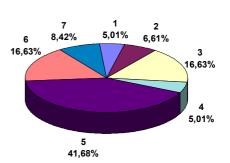
Л

Para isso deve saber o que cada máquina pode fazer

13.1- Tempo de Ciclo

É o tempo gasto pela máquina para executar uma **operação completa** (carregamento, transporte, descarga e retorno).

Tempo Fixo


É o tempo gasto em carregamento e descarga, incluindo quaisquer manobras que possam ser necessárias - **Tempo Constante**, independente da distância de transporte e retorno

Tempo Variável

É o tempo de percurso, ou o tempo nas fases de transporte e retorno do ciclo. Este tempo varia com a distância e as condições da estrada de transporte.

13.1.1- Perda de Tempo

01-Fraca Manutenção da Área de Corte	5,0%
02-Posicionamento Ineficiente	6,6%
03-Carregamento Muito Demorado	16,6%
04-Pusher Inadequado	5,0%
05-Estradas Mal Conservadas	41,6%
06-Manutenção Mecânica Insuficiente	16,6%
07-Manutenção Deficiente do Aterro	8,4%

13.1.2- Observações

1)Para reduzir o tempo fixo:

- Carregamento efetuado colina abaixo
- Eliminar o tempo de espera no corte, combinando o número de scrapers e "pushers" numa proporção correta para a obra
 - Utilizar os "pushers" equipados com escarificadores

2)Para reduzir o tempo variável

- -Planejar, cuidadosamente, o traçado das estradas de transporte.
- -Conservação das Estradas.

13.2- Eficiência

13.2.1 - Fator de Eficiência

Eficiência de trabalho é um dos elementos mais complexos no cálculo de produção, pois é influenciado por fatores como:

- -Experiência do Operador
- -Pequenos Consertos e Ajustamentos
- -Atrasos Pessoais
- -Atrasos Causados pelo Plano Geral de Trabalho

A Tabela 13.1 apresenta uma aproximação de eficiência, se não houver dados disponíveis da obra:

Tabela 13.1 - Fatores de Eficiência de Trabalho

-Operação Diurna Normal	Horas de Trabalho	Fator de Eficiência
Trator de Esteiras	50 min/h	0,83
Trator de Rodas	45 min/h	0,75
-Operação Noturna Normal		
Trator de Esteiras	45 min/h	0,75
Trator de Rodas	40 min/h	0,67

O fator de eficiência é igual à média de minutos trabalhados em uma hora, dividida por 60 min

13.2.2- Fatores de Correção

São utilizados para modificar os cálculos de produção, para que estes se ajustem a um determinado trabalho e às condições locais. Variam para cada tipo de máquina usada na obra

13.3.1- Etapas para cálculo da produção

- 1) Capacidade da Máquina
- O primeiro passo é determinar a capacidade da máquina, que será expressa como "A Carga" por ciclo.
- 2) Tempo de Ciclo

O segundo passo é calcular o tempo de ciclo da máquina. Todos os tempos de ciclo têm quatro etapas: carregamento, transporte, descarga e retorno. Achando-se o tempo de ciclo, pode-se determinar o número de ciclos por hora.

- 3) Produção horária
- O terceiro passo é calcular a produção horária, multiplicando-se o número de ciclos por hora pela carga por ciclo. Isso dá a produção horária com 100% de eficiência. Em seguida, multiplicar esse valor pelo <u>fator de eficiência de trabalho</u>, baseado na utilização do tempo.
- 4) Consideração de fatores de correção
- O quarto passo é considerar quaisquer fatores de correção. Estes fatores podem ser baseados na competência do operador, nos métodos de produção, nas condições do tempo, do tráfego, em imprevistos, etc.

A capacidade de um empreiteiro para determinar e aplicar estes fatores de correção em suas próprias condições específicas de trabalho irá determinar, em grande parte, o seu grau de sucesso no ramo da terraplenagem.

14. - Produção dos Motoscrapers

14.1- Tempo de Ciclo

Tempo de Carregamento - 0,6 a 1 min – Fixo

Tempo de Manobra e Descarga - 0,6 a 0,8 min - Fixo

Tempo de Transporte - depende do peso transportado, da potência disponível, do esforço de tração, da rampa efetiva, das condições da estrada de transporte e da distância percorrida

Tempo de IDA - Variável

Tempo de RETORNO - Variável

14.2 - Cálculo Produção Horária

 $Ph = C \times N \times E \times F$

Ph - produção Horária - m³/h

C - Capacidade da Caçamba em m³

E - Eficiência Horária

N – Nº de Ciclos por Hora

F - Fator de Conversão dos Solos

14.2.1 - Número Ciclos por Hora (N)

$$N = \frac{60}{T}$$

T = Tempo gasto em 1 ciclo

14.2.2 - Cálculo do Tempo Gasto em 1 Ciclo (T)

Calcular:

a) Tempo Ida \rightarrow T_{IDA}

b) Tempo Retorno $\rightarrow T_{RET}$

Para determinação dos tempos de ida e de retorno podem ser utilizados ábacos fornecidos por fabricantes de equipamentos, conforme exemplificado nas Figuras 14.1 e 14.2; podem ser utilizados ábacos de desempenho, conforme Fig. 14.3, ou podem ser utilizados ábacos tração versus velocidade.

- 1) Fig. 14.1 \rightarrow Rampa efetiva. x Dist. \rightarrow Tempo Scraper Carregado
- 2) Fig. 14.2 \rightarrow Rampa efetiva. x Dist. \rightarrow Tempo Scraper Vazio
- 3) Desempenho do retardador e dos freios tratores-scrapers de rodas podem, por motivos de segurança, ser obrigados a limitar sua velocidade de operação em descidas íngremes

Fig.14.3 \rightarrow P_{BRUTO} x Rampa efetiva \rightarrow Marcha \rightarrow Vel.

Gráfico Retardador – Rampa efetiva → Neg

Uma vez encontrada a máxima velocidade segura, o tempo de percurso para o segmento pode ser calculado por:

$$Tempo(\min) = \frac{Dist.(m)}{Veloc.(Km/h)} \times \left(\frac{60}{1000}\right)$$

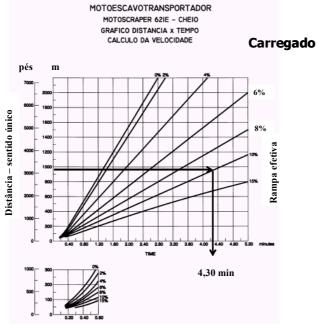


Figura 14.1 - Gráficos

Figura 14.2 - Gráficos

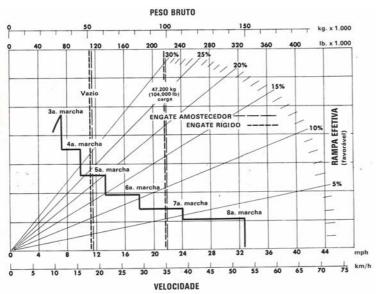


Figura 14.3 - Gráficos Curva de desempenho Motoescavotransportador Gráfico Retardador Motoscraper 621E Cálculo da Velocidade

14.3- Pusher (carregamento de scraper)

- -Tempo de Carregamento idêntico ao tempo calculado para scrapers 0,6 a 1,0 min
- -Tempo de Impulso (ou Reforço, fora da área de corte) 0,15 min
- -Tempo de Manobra (ou Retorno percurso até o trator scraper seguinte) 40% do tempo de carregamento
- -Tempo de Contato (acoplamento com o trator scraper) 0,10 min

Considerando

- Tempo de Carregamento = 0,6 min
- Tempo de Impulso = 0.15 min
- Tempo de Manobra (ou Retorno) = 0.24 min (40% de 0.6 min)
- Tempo de Contato (acoplamento com o trator scraper) 0,10 min
- Ciclo Total de "Pusher" = 1,09 minutos

14.4- No de Scrapers Servidos

 $N^{o} = \frac{tempo \ de \ ciclo \ do \ scraper}{tempo \ de \ ciclo \ do \ pusher}$

15- Carregadeiras

Observações:

- Deve-se tomar cuidado para não utilizar uma caçamba que seja grande a ponto de causar instabilidade na máquina durante a operação
- Capacidades nominais que devem ser consideradas na seleção de máquinas:

Capacidade rasa: é definida como o volume de material retido na caçamba que, depois de carregada, teve o excesso retirado, passando-se uma barra reta no sentido da largura da caçamba, com uma extremidade da barra apoiada na borda cortante e a outra na parte superior da chapa traseira ou da placa de retenção da caçamba

Capacidade coroada ou nominal: é obtida posicionando-se a caçamba de modo que a linha rasa fique paralela ao solo e, em seguida, empilhando-se material adicional no topo da carga rasa, num ângulo de repouso de 2:1. O volume total obtido corresponde à capacidade nominal da caçamba

Capacidade estática de tombamento: é definida como o peso mínimo, no centro de gravidade da caçamba, que fará a máquina girar até um ponto onde as rodas traseiras fiquem afastadas do solo.

- Para satisfazer aos padrões SAE (Society of Automotive Engineers), a carga de operação de carregadeiras de rodas não deve ultrapassar 50% da Carga Estática de Tombamento, em giro completo, da máquina equipada com acessórios necessários para a execução do trabalho (Para carregadeiras de esteiras, 35%).
- Outro fator que deve ser considerado no cálculo da produção de carregadeiras é o
 Fator de Carregamento (ou fator de derramamento ou fator de enchimento)

Devido às características físicas do material que está sendo carregado, a quantidade de material na caçamba nem sempre representa a capacidade nominal da caçamba. A porcentagem da capacidade nominal realmente retida variará com cada tipo de material. Essa porcentagem é denominada fator de carregamento.

Escolha da Máquina

Seleção da carregadeira de tamanho adequado

- (1) Determinar a produção requerida ou desejada
- (2) Determinar o tempo de ciclo da carregadeira e o número de ciclos por hora. Deve-se pressupor um tamanho de máquina para selecionar um tempo de ciclo básico
- (3) Determinar a carga útil de material solto requerida por ciclo
- (4) Determinar o tamanho de caçamba necessário
- (5) Proceder a escolha da máquina, tomando o tamanho da caçamba e a carga útil como critérios para satisfazer os requisitos de produção
- (6) Comparar o tempo de ciclo utilizado nos cálculos com o tempo de ciclo da máquina selecionada. Se houver diferença, recomeçar o processo a partir do passo (2)

Produção de Carregadeiras de Esteiras

• Basicamente a produção da carregadeira é igual à quantidade de material que a caçamba transporta por carga, vezes o número de cargas da caçamba por hora

(1) Capacidade da Máquina ou Carga por Ciclo

O material que uma carregadeira pode deslocar pode estar em estado natural (no corte) ou solto (retirado de uma pilha)

Material no corte

Para ajustar o material escavado (solto) na caçamba para m.c.c. (metros cúbicos no corte), apenas multiplicar a capacidade nominal da caçamba pelo fator de conversão.

Mas no caso de uma carregadeira, esta não é a capacidade final da máquina. O **Fator de Carregamento ou Fator de Transporte** deve também ser considerado.

Material solto

Quando o material estiver solto, a capacidade da máquina pode ser determinada multiplicando-se a capacidade nominal da caçamba pelo Fator de Carregamento ou Fator de Transporte

Uma vez determinada a carga potencial da caçamba, verificar as graduações da carga estática de tombamento da máquina específica, a fim de determinar se a carga da caçamba é de fato uma carga de operação segura (que não deve exceder 35% da carga estática de tombamento).

Tabela 15.1 - Produção e Seleção de Máquinas

Modelo (Fabricante)	Aplicação geral Tamanho da caçamba (m³)	Capacidade de operação recomendada (Kg)
933	1,0	1770
939	1,15	2040
953B	1,75	3260
963B	2,3	4700
973	2,8	5775

Tabela 15.2 - Fatores de Carregamento de Carregadeiras de Esteiras

Material Solto	Fator de Carregamento K (%)
Agregados úmidos mistos	95 – 110
Agregados uniformes até 3mm (1/8")	95 – 110
De 3mm (1/8") a 9mm (3/8")	90 – 110
De 12mm (1/2") a 20mm (3/4	4")
De 24 mm (1") e acima	90 – 110
Rocha explodida	
Bem explodida	80 – 95
Razoavelmente explodida	75 – 90
Pouco explodida	60 – 75
<u>Outros</u>	
Mistura de pedra e terra	100 – 120
Argila úmida	100 - 120
Terra, matacões, raízes	80 – 100
Materiais cimentados	85 – 100

(2) Tempo de ciclo

Tempo total de ciclo = tempo de carregamento + tempo de manobra + tempo de percurso + tempo de despejo

Tempo de ciclo básico = tempo carregamento + tempo despejo + tempo manobra O tempo de ciclo básico para uma carregadeira varia em média entre 0,25 e 0,35 min Tempo de carregamento - dependerá do material que estiver sendo carregado.

Tabela 15.3 - Tempos de Carregamento de Carregadeiras de Esteiras

<u>Material</u>	<u>Minutos</u>
Agregados uniformes	0,03 - 0,05
Agregados úmidos mistos	0,03 - 0,06
Argila úmida	0,03 - 0,07
Terra, matacões, raízes	0,04 - 0,20
Materiais cimentados	0,05 - 0,20

Tempo de manobra - cerca de 0,20 minutos, em aceleração total ou com um operador competente.

Tempo de despejo – é determinado pelo tamanho e resistência do alvo de despejo e varia entre 0,00 e 0,10 minutos. Tempos típicos de despejo em caminhões comuns vão de 0,04 a 0,07 minutos.

Tempos de Percurso (Transporte e Retorno) – podem ser determinados utilizando-se gráficos de tempo de percurso. O gráfico da Figura 15.1 é um exemplo.

Figura 15.1 - Gráfico para cálculo do tempo de percurso

Produção horária

Para escavações medidas no corte: $Ph = q \times F \times K \times E \times N$

q - capacidade nominal da caçamba (m³);

F - Fator de conversão dos solos:

K - Fator de carregamento ou fator de eficiência da caçamba. Expresso em % da capacidade, depende do grupo de solo;

E – fator de eficiência de trabalho, baseado em utilização de tempo;

 $N - n^{\circ}$ de ciclos por hora;

$$N = \frac{3600}{T}$$
 onde T - tempo total de ciclo (segundos)

Fatores de Correção – a produção horária multiplicada por quaisquer fatores de correção dará a produção horária final estimada da máquina

Produção de Carregadeiras de Rodas

Tempo de ciclo

Tempo total de ciclo – é composto pelas mesmas quatro partes: carregamento, transporte, despejo e retorno

Tempo de ciclo básico: inclui carregamento, despejo, manobras, ciclo completo do sistema hidráulico e percurso mínimo. Para simplificar, considera-se que o tempo de ciclo básico para uma carregadeira de rodas varia em média entre 0,45 e 0,55 min.

A esse tempo médio de ciclo básico adicionam-se ou subtraem-se tempos variáveis, para obtenção do tempo total do ciclo básico.

Determinação do **tempo total de ciclo**: adiciona-se o tempo de percurso (obtido em gráficos) ao tempo total do ciclo básico.

Carga útil requerida por ciclo – é determinada dividindo-se a produção horária requerida pelo número de ciclos por hora.

Tabela 15.4 - Correções de tempo de ciclo de carregadeiras de rodas

	Minutos somados (+) ou subtraídos (-) ao/do ciclo básico
Materiais	
Misto	+0,02
Até 3 mm (1/8")	+0,02
De 3 mm (1/8") a 20 mm (3/4")	- 0,02
De 20 mm (3/4") a 150 mm (6")	0,00
De 150 mm (6") para cima	+0,03 ou mais
No corte	+0,04 ou mais
Pilha	
De 3 m de altura ou mais, empilhada por correia transportadora ou buldôzer	0,00
De 3 m de altura ou menos, empilhada por correia transportadora ou buldôzer	+0,01
Descarregado por caminhão	+0,02
Diversos	
Caminhões e carregadeiras de um mesmo proprietário	Até -0,04
Caminhões de terceiros	Até +0,04
Operação contínua	Até -0,04
Operação não-contínua	Até +0,04
Alvo pequeno	Até +0,04
Alvo frágil	Até +0,05

Seleção de caçambas

calcular a carga útil requerida por ciclo

Λ

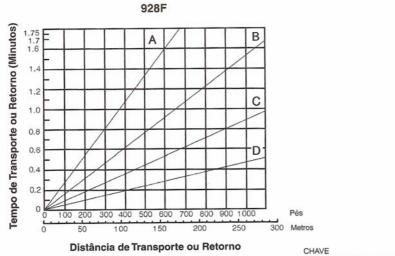
dividir pelo peso/m³ de material solto

1

Dessa forma determina-se o volume (m³) de material solto por ciclo (Para cálculos precisos de produção é necessário um conhecimento razoável do peso específico dos materiais. Quando os pesos específicos reais não forem conhecidos, podem ser utilizadas tabelas que fornecem o peso específico médio de certos materiais)

1

Determinar o tamanho de caçamba necessário para transportar o volume requerido por ciclo, dividindo-se esse volume pelo fator de carregamento


Λ

tamanho da caçamba =
$$\frac{volume \ requerido / ciclo}{fator \ de \ carregamento \ da \ caçamba}$$

Tabela 15.5 - Fatores de Carregamento de Carregadeiras de Rodas

Material Solto	Fator de Carregamento K (%)
Agregados úmidos mistos	95 – 100
Agregados uniformes até 3mm (1/8")	95 – 100
De 3mm (1/8") a 9mm (3/8")	90 – 95
De 12mm (1/2") a 20mm (3/4	4") 85 – 90
De 24 mm (1") e acima	85 – 90
Rocha explodida	
Bem explodida	80 – 95
Razoavelmente explodida	75 – 90
Pouco explodida	60 – 75
<u>Outros</u>	
Mistura de pedra e terra	100 – 120
Argila úmida	100 - 110
Terra, matacões, raízes	80 - 100
Materiais cimentados	85 – 95

Produção horária - Exemplo

A — 1ª Marcha Avante e à Ré
B — 2ª Marcha Avante e à Ré

C — 3º Marcha Avante e à Ré C — 4º Marcha Avante

16 - Produção de caminhões fora-de-estrada

Para a determinação da produção de caminhões fora-de-estrada devem ser seguidos os quatro passos básicos: determinação da capacidade da máquina (geralmente em tf); do tempo de ciclo, da produção horária e consideração do fator de correção

16.1- Tempo de Ciclo dos Caminhões

T Ciclo = T. Carga + T. Transporte + T. Despejo

- T.Carga = é determinado pela capacidade da carregadeira ou escavadeira que está trabalhando com o caminhão. Para calcular o T.carga, calcular o número de caçambas necessárias para carregar o caminhão até a sua capacidade nominal.
- T. Despejo = depende da disposição da obra, da maneira como a carga é despejada
- T. Transporte e Retorno = podem ser calculados usando-se curvas de tempo de percurso

A soma desses quatro elementos mais qualquer tempo previsto de espera será o tempo de ciclo total

Cálculo do tempo de ciclo dos caminhões

a) - No de Unidades de Transporte para atender à produção de uma escavadeira (N)

$$N = \frac{tc + td + tt}{tc}$$

tc

- 1 unidade (1 caminhão)

tc + td + tt

- tempo total de ciclo do caminhão

Onde

tc - tempo de carga de um caminhão

td – tempo de despejo

tt - tempo de transporte (ida + retorno)

(b) - Cálculo do Tempo de Carga para encher 01 unidade

tc = n1. T (2-E)

E - fator de eficiência de trabalho da carregadeira

ou escavadeira

T - Tempo de um ciclo da carregadeira ou

escavadeira

n1 - Número de caçambas

c) Nº de caçambas para encher uma unidade (n1):

$$n1 = \frac{Q}{q \times K}$$

$$Q = n1 \times q \times K$$

Sendo

Q – Capacidade do caminhão;

q – Capacidade da caçamba

K – Fator de carregamento

d) Cálculo do tempo total de ciclo do caminhão:

Tt = tt + tc + td

Desempenho do retardador e do freio

Ao operar em declives íngremes os caminhões "fora-de-estrada" devem limitar sua velocidade de operação, para que a capacidade de frenagem ou retardamento da máquina não seja ultrapassada. Isso afeta o tempo de percurso.

A máxima velocidade segura pode ser obtida usando-se curvas de desempenho, como a que aparece na Figura 16.1.

Uma vez determinada a máxima velocidade segura, o tempo de percurso para o segmento pode ser calculado através da seguinte fórmula.

tempo de percurso (min) =
$$\frac{distância (metros)}{velocidade (Km/h) 16,7}$$

Deve-se observar que as curvas do retardador são, geralmente, baseadas no comprimento da rampa. Distâncias de rampa mais curtas permitem maiores velocidades descendentes.

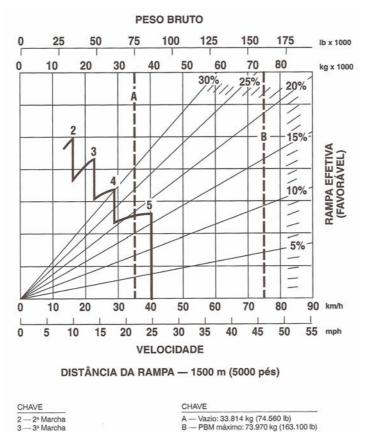


Figura 16.1 - Curva de desempenho

17- Motoniveladoras

São empregadas:

- 1) Abertura de valetas
- 2) Taludamento
- 3) Espalhamento de Terras
- 4) Acabamento do leito de estradas, de sub-base e base.
- 5) Conservação das Estradas de Transporte
- 6) Espalhamento de Agregados na Fase de Pavimentação

17.1- Tempo para Executar um Serviço

$$T = \frac{d \times n}{Vm}$$

T - Tempo p/ executar o serviço em horas

d - Distância em Km

n - $n\underline{o}$ de passadas sobre a faixa, para completar a operação. É função da natureza do solo, largura da faixa, estado da faixa e peso da máquina

Vm - Velocidade Média em Km/h

17.2- Produção Horária (m2 /h)

$$Ph = Vm \times \frac{E \times L}{n}$$

Ph - Produção em m²/h

E - Eficiência Horária

L - Comprimento útil da lâmina (m)

Vm - Velocidade Média - m/h

n - Nº de Passadas

 $L = A sen \theta$

A - Comprimento real da Lâmina

θ - Ângulo formado entre a posição da Lâmina e a Direção da Marcha

18 - Compactação

É o processo pelo qual se obtém, artificialmente, a compressão ou o aumento de resistência do solo

É aplicado em Barragens, Aeroportos, Estradas, etc.

Produção Horária - Ph (m3/h)

$$Ph = \frac{L \times V \times e \times 10}{n}$$

L = Largura compactada por passada (em metro)

V = Velocidade média em km/h

e = Espessura, em cm, compactada

10 = Constante

n = No necessário de passadas da máquina

19 – Custos de Máquinas

19.1-Composição de custos

Na composição de custos para a realização de um serviço de Terraplenagem, vários fatores contribuem. Os índices utilizados podem variar dependendo da firma ou do profissional, sendo o maior contribuinte para essa variação a EFICIÊNCIA.

Custo Horário de Equipamentos

O custo de uma operação a ser realizada é parcelado nos seguintes componentes:

- **Custos de propriedade**: Depreciação (valor de aquisição dividido pela vida útil); Seguro; Impostos de propriedade; Juros (deve ser considerado mesmo quando o pagamento foi feito à vista, pois o dinheiro do proprietário poderia estar rendendo se não tivesse sido utilizado na aquisição da máquina)

- Custos de operação:

- Manutenção (reparo das peças)
- Mão de Obra (salário do operador)
- Material (combustível, lubrificantes, filtros, graxa, pneus para máquinas de rodas, pontas de escarificador, bordas cortantes para motoniveladoras, etc.)

Custo por m3

Para empreiteiros de terraplenagem, a despesa mais importante é o **custo total por metro cúbico** de terra removida.

Para o seu cálculo, os custos horários de propriedade e operação e a produção horária devem ser corretamente determinados.

$$custo / m^3 = \frac{custo \ total \ do \ equipamento \ usado \ no \ trabalho \ (\$/h)}{produção \ horária \ (m^3 \ pagos \ /h)}$$

Esse cálculo não inclui margem de lucro, que deve ser incluída para se obter um preço de concorrência.

Exemplo 1

Qual é o Custo horário de um Trator de Esteira, considerando:

-300 HP Potência - 10 anos Anos - 2000 h. por ano • Horas Valor de Aquisição - R\$ 530.000,00

 Depreciação - R\$ 26,50 (530.000 / (2000 h x 10 anos))

• Juros - R\$ 16,91 Manutenção - R\$ 53,00 Operação

- R\$ 18,85 . Material . Mão de Obra - R\$ 3,61

Custo Horário

. Improdutivo - R\$ 47,02 (26,50 + 16,91 + 3,61)

. Produtivo - R\$ 118,87 (26,50 + 16,91 + 3,61 + 53,00 + 18,85)

Bibliografia

RICARDO, Hélio de Souza e CATALANI, Guilherme. Manual Prático de Escavação. Terraplenagem e Escavação de Rocha. 3ºed. Editora PINI. 2007.

SENÇO, Wlastermiler. Terraplenagem. Universidade de São Paulo. Escola Politécnica. 1980.

ABRAM, Isaac; ROCHA, Aroldo V. Manual Prático de Terraplenagem. Salvador, Bahia. *2000*.

Manual de Produção da Caterpillar (1995). Edição 26.

Apostila do Prof. Luiz Cezar Duarte Pacheco, da Faculdade de Engenharia da Universidade Federal de Juiz de Fora.

Apostila do Prof. Gil Carvalho Paulo de Almeida, da Faculdade de Engenharia da Universidade Federal de Juiz de Fora.